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Abstract. The spinning of a homogeneous spherical object and of a spherical object 
surrounded by a thin shell, when placed in various electric field configurations is studied. 
In static electric fields the electrorotation appears if the electric field strength exceeds a 
threshold value. In alternating fields this threshold is frequency dependent. The electrorota- 
tion spectra for rotating electric fields are analysed emphasising the shell contribution. We 
also analyse the connection between dielectrophoresis and electrorotation. 

1. Introduction 

The spinning of small physical objects can occur when they are subjected to static, 
alternating or rotating electric fields. 

The phenomenon originates in the appearence of a non-zero electric torque acting 
on a suspended object in different field geometries. The polarisation mechanism 
effective at frequencies up to lo7 Hz is the interfacial Maxwell-Wagner polarisation. 
The same polarisation mechanism is responsible for the appearance of the dielec- 
trophoretic force, so these phenomena are strongly interrelated. 

The spinning of solid particles in strong electrostatic fields was reported as early 
as 1896 by Quincke (1896). The phenomenon exhibits a threshold value of the electric 
field and occurs only if certain conditions concerning the electric properties of the 
particle and of the external medium are satisfied. Lampa (1906) was the first to state 
correctly the general condition required for spontaneous rotation. These pioneering 
works were followed by many theoretical or applied contributions, reviewed in a paper 
by Jones (1984). 

Electrorotation can occur not only in static electric fields but also in alternating 
electric fields. The phenomenon was observed both for multicell (Teixeira-Pinto et a1 
1960, Holzapfel et a1 1982) and for single-cell (Pohl and Crane 1971) cases. 

The multicell electrorotation was attributed to a dipole-dipole interaction between 
neighbouring cells (Holzapfel et a1 1982) which leads to a non-zero time-averaged 
electric torque. 

A theoretical investigation of the single-cell rotation has been reported by one of 
us (Turcu 1987). A dynamical symmetry breaking mechanism able to describe the 
appearance of the rotational motion was proposed. 

Another possibility for inducing rotation is to use continuous (Arnold and Zimmer- 
mann 1982) or pulsed (Mischel et a1 1982, Glaser et a1 1983) rotating electric fields. 
The electrorotation spectra have a relatively sharp maximum at a characteristic 
frequency and in some cases even a second maximum could appear (Fuhr et a1 1985). 
Several theoretical approaches have been proposed in order to explain the experimental 
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facts (Arnold and Zimmermann 1982, Hagedorn and Fuhr 1984, Lovelace et a1 1984, 
Sauer and Schlogl 1985, Fuhr et a1 1986). 

In the preceding paper (Turcu and Lucaciu 1989) we analysed the dielectrophoretic 
force acting on a simple spherical object and on a spherical object surrounded by a 
single shell. 

In the present paper we propose a unitary approach to all electrorotation 
phenomena, giving the complete algebraic expression and some systematic approxima- 
tions for the electric torque for the same models. The connection between dielec- 
trophoresis and electrorotation is also analysed. 

The notation is the same as in the preceding paper. 

2. Electrorotation in static homogeneous fields 

We shall briefly discuss the spherical model. 
The rotational motion occurs if the appearance of a non-zero electric torque 

T, = P,,t x E (1) 

tends to accelerate any random initial rotation, causing the static steady state to become 
unstable. 

In order to find the expression for the torque we must calculate the effective dipole 
moment induced in an anticlockwise rotating sphere, for instance by a static 
homogeneous electric field. In the rotating coordinate system, at rest with respect to 
the sphere, the field becomes a clockwise rotating vector: 

=(e,  -i  e*) exp(-iwt) (2) 

where o is the angular frequency of the sphere and e,  and e, are two orthogonal unit 
vectors in the rotation plane. 

Introducing the dimensionless susceptibility : by 

$& = E ]  Vf& (3) 

T , = -  E ]  VE2 Im 2. 
enables us to put the electric torque into the simple form 

(4) 

As the rotating electric field (2) can be written as the sum of two orthogonal 
sinusoidal fields with the same frequency and with 7 ~ / 2  phase shift, the susceptibility 
is identical to that found for alternating fields: 

= [ K  + N/(1  - i w ~ ) ]  ( 5 )  

where 

K = 3 ( ~ , -  1 ) / ( ~ , + 2 )  

N = -9( E ,  - Vr)/( E,+ 2)(a,+ 2). 

From (4)-(6) the electric torque can be expressed as 

where x = W T  and we have changed back to the frame at rest with respect to the field 
by the substitution o + -W.  
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Taking into account the viscous torque 

T, = -6 V ~ W  

7 being the dynamical viscosity of the external medium, the equation of motion of 
the sphere, 

Idwldt  = T,+ T,, (9) 
can be put into the following dimensionless compact form (Turcu 1987): 

d t  1+x2  

where 

and I is the momentum of inertia of the sphere. 
For small values of the field ( p  < 1)  equation (10) admits only the trivial solution 

x1 = 0. The picture changes qualitatively if the field strength exceeds the threshold 
value E, (i.e. E > E,) when two new real solutions appear. The new solutions are 
symmetrical and describe the rotational motion that can occur to the right or to the 
left, the direction of rotation being dictated by chance. The angular frequency of the 
rotational motion is controlled only by the relative field strength 

x ~ , ~ =  *(E~/E:-I)? (12) 

It must be emphasised that the appearance of the spontaneous rotation is ensured 

Let us consider now the model of the spherical shell. The whole reasoning remains 
only if E,> U,,  otherwise p < 0 and the static steady state remains stable. 

unchanged, only the dimensionless susceptibility must be rewritten as 

= K + Nl/( 1 +iurl) + N2/(1 + i0r2) (13) 
where 

K = 3 ( q -  l)/(E,+ 2) 

NI = -[90,/2( U, + 2)][ 1 + urm( U, + 2)/ 2 S ~ ~ l - l  

N2 = -9( E, -  ur)/( E,+ 2 ) ( ~ , +  2). 

We are interested once again in the steady state solutions of the equation of motion 
which, for the spherical shell model, becomes 

dy /d t=  c Y [ P 1 / ( 1 + Y Z ) + a p 2 1 ( l + a 2 y 2 ) - 1 1  (15) 

where 

In the case of thin shells at low conductivity, conditions largely accomplished by 
biological cells for instance, the inequality 

a<<. 1 (17) 
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allows us to neglect, in a first approximation, the second term of the right-hand side 
of (15). Consequently one obtains results formally identical with those of the spherical 
case. There are nevertheless two main points that must be noted. 

(i)  The sign of the dimensionless parameter p1 is always positive so that the spinning 
always begins as soon as the electric field strength exceeds the threshold value E,, . 

(ii) Because T~ >> the relative contribution of the second term of the right-hand 
side of (15) is drastically diminished and the spontaneous dynamical symmetry breaking 
is controlled by the membrane contribution to the induced effective dipole moment. 

It must also be emphasised that the threshold value of the electric field strength is 
diminished with respect to the spherical case: 

As a direct consequence, the rotation of small spherical bodies is much easier to 
accomplish if they are surrounded by a thin shell of low conductivity. 

3. Electrorotation in alternating homogeneous fields 

Electrorotation can occur not only in static electric fields but can also appear in a 
homogeneous alternating electric field. 

The problem of the spontaneous rotation of a single sphere subjected to an 
alternating electric field was analysed by one of us in a previous paper (Turcu 1987). 
Essentially the novelty introduced by the extension from static to sinusoidal fields 
consists of the appearance of a domain in the bidimensional parameter space (having 
the field strength and the field frequency as coordinates) where several competing 
dynamics are locally stable. The static steady state, for instance, has a metastable 
behaviour before becoming unstable. The rotational motion develops discontinuously 
via a non-stationary regime in contrast to the static electric field case when the spinning 
develops continuously from rest. 

The results can be extended to the spherical shell model by adding to the effective 
dipole moment a new term representing the shell contribution. In the limit T~ >> T~ the 
shell contribution becomes dominant, so that all the results of Turcu (1987) are 
reproduced. The only thing that must be done is to replace the dimensionless parameter 

It must be noted that the rich dynamical picture emerging from the introduction 
of the electric field frequency as a new parameter is, in the spherical shell model, 
mostly determined by the shell properties. 

P by PI. 

4. Electrorotation in rotating electric fields 

From a physical point of view the electrorotation can be induced in two ways. 
(i) By raising the electric field strength above a threshold value at which point a 

spontaneous dynamical symmetry breaking can occur and a field-dependent rotational 
motion can be obtained. 

(ii) By breaking from outside the axial symmetry by subjecting a suspended body 
to a rotating electric field with variable angular frequency. 

In the present section we shall investigate the second line of action for both the 
spherical and the spherical-shell models. 
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4.1. The spherical model 

As we have seen in the previous section, when a sphere is subjected to a rotating 
electric field 

(19) 

(20) 

(21) 

I? = (el  - ie2) exp(ioot) 

i = K + N/(1  +iwoT). 

T, = 3 VE NE ’x0/  ( 1 + x i )  

the standing sphere response is characterised by the dimensionless susceptibility 

By taking the imaginary part of (20) one finds the expression for the electric torque 

where xo = w 0 r  
When the sphere rotates with an angular frequency w we must, replace wo in (21) 

by the difference wo - w. Taking into account also the torque imparted by the viscous 
forces, the equation of motion has the following compact form: 

One can remark that when xo = 0, equation (22) is identical to (10) valid for static 

The steady state solutions of (22) are obtained as the real roots of the third-order 
electric fields. 

algebraic equation 

x [  1 + ( x  - xo)’] = p ( x  - xg).  (23) 
It must be emphasised that in contrast to the case of an electrostatic field the static 

steady state is not admitted as a solution by the equation of motion for a particle 
subjected to rotating electric fields. The third-order equation (23) has always at least 
one real non-zero solution for arbitrary small field strengths. Consequently there is 
no threshold value for the field. 

For field strengths smaller than the threshold value E,(p < 1) equation (23) has 
only one real solution 

x 1  =[A+(A2-B3)1/2]1/3+[A-(A2-B3)1/2]1/3 (24) 

A = - & [ 2 ~ : +  9 ~ 0 (  p + 2)] (25) 

where 

B = f [ x ;  + 3( p - l)]. 
In the limit of very small values of p ( p  << 1) it is not difficult to observe directly 

from (22) that the solution x ,  also satisfies the inequality xl<< 1 so that it can be very 
well approximated by 

(26) 
This is the expression usually found in the literature (Arnold and Zimmermann 1982, 
Fuhr et al 1986). 

It is useful to remark that the dimensionless electrorotation frequency can be simply 
expressed in terms of the imaginary part of the susceptibility 

x1 = -pxo/(  1 + x : ) .  

x 1  =-(.z17E2/67) I m i  (27) 
having the same dependence on the angular frequency of the rotating electric field. 
The shape of the electrorotation spectra for several values of the parameters E ,  and (T, 

are shown in figure 1. 
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Figure 1. Frequency dependence of the imaginary part of the complex electric susceptibility 
in the spherical model for ( a )  ~ , = 2  and ( b )  ~ , = 0 . 5  and for several values of the 
dimensionless parameter a , = 2 0  (dotted curve), 1 (broken curve), E, (chain curve), 0.2 
(full curve). 

As the coefficient N may be either positive or negative the electrorotation in rotating 

For sufficiently strong fields such that E > E, ( p  > 1) all the roots can be real, and 
electric fields can be co-field or counter-field, with E,> cr, or E ,  < U, respectively. 

have the following expressions: 
1 -2 - 3x0 -t 2 0  COS( l / 3 )  

(28) 
X2,J =;xo-2JBcos[(l.t27r)/3] 

where 

COS 5 = A / J S .  
Nevertheless it must be emphasised that the last two roots become rapidly complex 

when the field angular frequency wo increases. For a given value of p (  p > l ) ,  roots 
~ 2 , 3  are real only in the restricted domain 

A'< B3.  (30) 
The appearance of some competitive dynamics in the low-frequency range, as soon 

as the field strength exceeds a threshold value, is due to the competition between the 
two different ways of inducing the rotational motion. As can be seen, the field-induced 
electrorotation is effective only for static or slowly rotating strong electric fields. 

The electrorotation can be induced at much smaller values of the electric field 
strength if continuous (Arnold and Zimmermann 1982) or pulsed (Mischel et a1 1982) 
rotating fields with variable frequency up to 1 MHz, for instance, are used. 

Experimentally measured electrorotation spectra (Mischel and Pohl 1983, Glaser 
et a1 1983, Lovelace et a1 1984) are generally well fitted by the formula (26). 

By extending the frequency of the external rotating field to higher values, a second 
maximum was found (Fuhr et a1 1985) at a higher characteristic frequency. Only the 
spherical-shell model predicts such a behaviour, as has been shown by Fuhr et a1 (1986). 
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4.2. The spherical-shell model 

For the spherical shell, the susceptibility characterising the response to the rotating 
electric field (19) is given by 

f = K + NJ(1 +iworl) + N 2 / (  1 +iwOr2)  (31) 
from which the expression for the electric torque is found to be 

Remembering that NI and N2 are given by (14) it must be noticed that the shell 
contribution given by the first term is always negative in contrast to the second term 
which can have both signs. 

An expression having a similar form was earlier obtained by Fuhr et al (1986) but 
in our opinion some error has been made, such that their formula (12) gives wrong 
results in the two limiting cases S + 0 or 6, + Z2 when the simple spherical model must 
be recovered. 

The second limit is not directly applicable to (14) and (32) on account of the 
approximations that have been made but the general expressions (19), (22) and (27) 
from our preceding paper have the right limits. 

With the formula (32) modified in order to take into account the rotation of the 
sphere, one obtains the equation of motion for a spherical shell 

d t  - [ 1 + ( y  -yo)’+ 1 + a2(y -yo)’ 
_-  dY P1(Y-Y0) (33) 

where 

y = U71 yo = 0 0 7 1  * (34) 
As for the spherical model, we are interested in the steady state solutions. 
For small field strengths (pl,’<< 1) there is again only one real solution given with 

a very good approximation by 

Y1= -P1Yo/(l +Y3 -P2aYo/(l+ a 2 y 3  
which can be put into the compact form 

y1 = -(&171E2/67) Im 8. 

(35) 

(36) 

Several typical electrorotation spectra calculated for the same parameters as for 
the spherical model are shown in figure 2. 

As one can see, the spectra remain almost unchanged in the high-frequency range. 
The contributions introduced by the shell consist of the appearance of a second 
characteristic frequency located in the lower-frequency range and of a corresponding 
maximum in the electrorotation spectra. As for the simple spherical model the electro- 
rotation can have a co-field or a counter-field direction for high frequencies but always 
has a counter-field direction in the lower-frequency range. 

For sufficiently strong fields such that E > E,,(pl > 1) and for small values of the 
rotating field frequency equation (33) has three real roots. As a << 1 the contribution 
of the second term in the right-hand side of (33) can be omitted and an equation 
similar to (22) is obtained. Consequently all that we have said in the case of the 
spherical model becomes valid; the only thing that must be done is to replace p, x and 
xo by pl, y and yo  respectively in the formulae (25), (28)-(30). 
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Figure 2. Frequency dependence of the imaginary part of the complex electric susceptibility 
in the spherical shell model for urm = 0, S = E,, = 0.1, and for ( a )  E ,  = 2 and ( b )  E ,  = 
0.5, and for several values of a,=20 (dotted curve), 1 (broken curve), E ,  (chain curve), 
0.2 (full curve). 

5. Conclusions 

The electrorotation of small physical objects suspended in a conducting dielectric 
medium can be induced in two different ways. 

(i)  By a spontaneous dynamical symmetry breaking mechanism using static or 
alternating electric fields. 

(ii) By breaking from outside the axial symmetry by subjecting the suspended body 
to a rotating electric field with variable frequency. 

The first possibility requires high values for the electric field strength, the rotational 
motion appearing only if the field exceeds a threshold. By examining the possibility 
of inducing this type of rotation for a simple spherical particle and for a spherical 
particle surrounded by a single thin shell at low conductivity we can conclude that 
the presence of the shell can drastically reduce the threshold value for the electric field 
strength. 

The second way seems to be much easier when the rotational motion can be induced 
even for small values of the electric fields. 

By comparing the electrorotation spectra obtained in the spherical and in the 
spherical-shell models one can see that the shell brings a second maximum located at 
a new characteristic frequency. For thin shells of low conductivity this frequency is 
smaller than the characteristic frequency for the spherical model so that once again 
the presence of the shell seems to be useful. 

We want to emphasise that all the electrorotation phenomena were described in 
terms of the imaginary part of the electric susceptibility calculated for a Maxwell- 
Wagner interfacial polarisation mechanism. In the previous paper we analysed the 
dielectrophoretic spectra for both the above-mentioned models. The dielectrophoretic 
force is proportional to the real part of the same electric susceptibility. By examining 
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now the dielectrophoretic and the electrorotation spectra one can see that they are 
strongly interrelated, being controlled by the same parameters and having the same 
characteristic frequencies. The information obtained from the experimental determina- 
tion of one type of spectrum is enough to find the complex susceptibility and to 
completely characterise both phenomena. 

After our two papers were written we learned of a recent paper by Pastushenko et 
al (1988) who elaborated a unitary theory of electrorotation and dielectrophoresis. 
However, our treatment covers a wider range of phenomena and in addition offers 
some useful analytical expressions. 
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